
www.manaraa.com

Scandinavian Journal of Information Systems

Volume 8 | Issue 2 Article 5

1996

Evolving a Generic Application into a Domain-
oriented Design Environment
Anders Mørch
University of Bergen, anders@ifi.uib.no

Follow this and additional works at: http://aisel.aisnet.org/sjis

This material is brought to you by the Journals at AIS Electronic Library (AISeL). It has been accepted for inclusion in Scandinavian Journal of
Information Systems by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Mørch, Anders (1996) "Evolving a Generic Application into a Domain-oriented Design Environment," Scandinavian Journal of
Information Systems: Vol. 8 : Iss. 2 , Article 5.
Available at: http://aisel.aisnet.org/sjis/vol8/iss2/5

http://aisel.aisnet.org/sjis?utm_source=aisel.aisnet.org%2Fsjis%2Fvol8%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol8?utm_source=aisel.aisnet.org%2Fsjis%2Fvol8%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol8/iss2?utm_source=aisel.aisnet.org%2Fsjis%2Fvol8%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol8/iss2/5?utm_source=aisel.aisnet.org%2Fsjis%2Fvol8%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis?utm_source=aisel.aisnet.org%2Fsjis%2Fvol8%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol8/iss2/5?utm_source=aisel.aisnet.org%2Fsjis%2Fvol8%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

www.manaraa.com

© Scandinavian Journal of Information Systems, 1996, 8(2):63–90

This paper presents an approach for how
end-users can tailor (and evolve) generic
computer applications into domain-oriented
design environments. It is proposed as a rem-
edy for inflexible computer applications, and
as an alternative to building domain-oriented
design environments from low-level building
blocks. A typical generic application is a
word processor, a drawing program, or an e-
mail system developed for a generic task such
as writing, creating diagrams, or sending
electronic messages; whereas a domain-ori-
ented design environment is an application
developed for a specialized task, such as col-
laborative writing, home planning, or meet-
ing scheduling.

End-user tailoring addresses general prob-
lems in software reuse and requirements cap-
ture. It supports application evolution by a
set of tools that are integrated into a generic
application. The tools give an end-user ac-
cess to the parts of the application that have

to be addressed during tailoring. A method
for building and integrating the tools is de-
scribed. How to use the tools to evolve a basic
drawing program into a kitchen design envi-
ronment is given as an example. The paper
ends with a general discussion of the ap-
proach, and gives suggestions for further
work in the area.

1. Introduction
Generic applications are computer-based
tools that help professional users with re-
current tasks such as writing papers,
drawing diagrams, tabularizing data, and
sending messages to other people. It is a
general held belief in many professions
that these tasks are important. The appli-
cations supporting the tasks are therefore
also important. Generic applications
have a peculiar characteristic that makes
them different from their predecessor ar-

Evolving a Generic Application into a
Domain-oriented Design Environment

Anders Mørch
Dept. of Information Science, University of Bergen

N-5020 Bergen, Norway
anders@ifi.uib.no

1

Mørch: Evolving a Generic Application into a Domain-oriented Design Envi

Published by AIS Electronic Library (AISeL), 1996

www.manaraa.com

A. Mørch 64

tifacts, typewriters and electronic calcu-
lators: computer applications are richer
in functionality and have a greater poten-
tial for adaptation. This potential is
largely a result of their software nature
and has only partly been realized in to-
day’s computer applications. To fully re-
alize this potential and to transcend the
hardware analogy to reuse (plugging
components into sockets inside a ma-
chine), software applications must be
adaptable at the user interface by the
end-users to fit their needs and the re-
quirements of the organization in which
they work.

End-user tailoring is defined as the
process of making persistent adaptations
of a generic application to the local re-
quirements of an end-user organization
(Mørch 1995). This article addresses
how to support this process. The focus is
on how to build technology so that peo-
ple can adapt the technology to their en-
vironment, rather than the other way
around.

The article is organized as follows:
first the general problem motivating this
research is described. Then a solution to
the problem is proposed, both as a meth-
od and a set of tools for doing tailoring.
A scenario showing how to use the tools
to tailor a generic drawing program is
given as an example. It is shown through
the example that tailoring is a kind of ap-
plication evolution: an application, in the
hands of one or more users, can evolve
from one task-domain to another. An em-
pirical evaluation of the tailoring tools
showed that college-level users were
able to tailor a generic application at
three levels of complexity. The study fur-
thermore confirmed an hypotheses that
rationale was useful for comprehension
of program code. It also revealed some

shortcomings, including that rationale
may be less useful for code that is diffi-
cult to understand and hence be of less
value for complex systems. A discussion
at the end will illuminate some of the
strengths and potential weakness in that
the of this approach. Future work aims at
addressing some of the shortcomings
and weaknesses.

2. The problem addressed and
related approaches
The general problem addressed in this
article is software reuse. Software reuse
refers to the process of creating software
systems from existing systems rather
than building them from scratch (Bigger-
staff 1989, Fischer 1987, Krueger 1992).
Four steps in this process are: (1) locat-
ing existing software components, (2)
understanding what they do, (3) integrat-
ing them with other components, and (4)
extending them to create new compo-
nents. For reuse to be realistic, it should
be easier than building a system from
scratch.

The particular software systems ad-
dressed in this project are generic appli-
cations. A generic application is typical-
ly an off-the-shelf, packaged software
product, such as a word processor, a
spreadsheet, or a drawing program, but it
can also a be custom-made (in-house de-
veloped) system where the original re-
quirements have changed, making it in-
compatible with respect to current needs.
Due to the general nature of the tasks
supported by a generic application, they
are likely to change as the application is
being used. This is a consequence of the
varying levels of user expertise and as a
result of user organizations having dif-

2

Scandinavian Journal of Information Systems, Vol. 8 [1996], Iss. 2, Art. 5

http://aisel.aisnet.org/sjis/vol8/iss2/5

www.manaraa.com

A. Mørch 65

ferent requirements for how to accom-
plish the tasks. How to adapt an applica-
tion to better support new tasks and lo-
cally defined requirements is the specific
problem addressed in this project.

The scope of the problem ranges
from issues in software engineering and
object-oriented programming (software
reuse) to issues in human-computer in-
teraction and social aspects of technolo-
gy use (design, requirements capture, or-
ganizational use). This broad scope, I
claim, is necessary for a full exposure of
the issues that are relevant to end-user
tailoring. A disadvantage is that the ex-
posure may at times seem unfocused. I
try to overcome a lack of focus by giving
references to related work when applica-
ble.

The terms application-evolution and
end-user tailoring are used synonymous-
ly throughout this article. End-user tai-
loring borrows terminology from hu-
man-computer interaction, end-user pro-
gramming, and object-oriented program-
ming, and this terminology been
described in a companion article (Mørch
1995). It is further (more remotely) relat-
ed to research in artificial intelligence
(AI), in particular work on genetic algo-
rithms and evolutionary programming
(Angeline 1995). The aim of the AI work
is to make a computer system automati-
cally adapt to a surrounding environ-
ment.

The current work, in contrast to the
AI work, gives the end-users first-class
status in the evolutionary process by
making themselves creators of evolu-
tionary change. This shift in focus (from
machine to human intelligence) is in-
spired by the Scandinavian democratic
approach to system development (Bjerk-
nes et al. 1991, Bjerknes et al. 1987,

Greenbaum & Kyng 1991). In most of
the Scandinavian countries, the future
users of a computer system have the le-
gal rights to participate (or have repre-
sentatives participate) in the process of
designing it. The term “end-user” is
therefore a collective term I use for the
people (users, groups of end-users, local
developers) working in a user organiza-
tion (consumers of generic applications)
as opposed to the people (designers, pro-
grammers, support personnel) working
in a developer organization to produce
the generic applications.

End-user tailoring requires tools and
techniques for doing tailoring that are
available during use. These tools need to
be integrated into generic applications
during development. Many of today’s
applications do have built-in tools for
various kinds of tailoring activities. For
example, MS Word 6, allows the user to
customize the user interface of the word
processor by changing views of menus,
buttons, and toolbars, and to create new
functionality by writing macros in Visual
Basic (Figure 1).

3. Method and tools for end-user
tailoring
Tailoring support is needed when the
functionality of a generic application is
insufficient, incomplete, or obsolete, or
the environment in which the application
is being used has changed. The environ-
mental constraints give the requirements
for changing the application, and the
agent of change is the end-user. Tailoring
is therefore initiated by the end-users to
continue the design started by the origi-
nal developers (Henderson & Kyng

3

Mørch: Evolving a Generic Application into a Domain-oriented Design Envi

Published by AIS Electronic Library (AISeL), 1996

www.manaraa.com

A. Mørch 66

1991), but delayed by a difference in
time and geographical location.

The distinction between use, tailor-
ing, and development is “blurry.” This is
intentional because I try to extend the
technical software engineering perspec-
tive towards the use situation. However,
there are transitions between the three
modes that can be identified, and one of
them is caused by a breakdown
(Winograd & Flores 1986). A break-
down identifies the transition between
use and tailoring (Mørch 1994). Break-
downs are created when the application

can no longer be used for a task the user
wishes to perform. For example, when
the default column width of a word proc-
essor is not the one you want, or the scale
command of a drawing program isn’t
scaling figures the way you want it to
scale, it creates a breakdown for the user.
However, a breakdown is not entirely
negative (as the term may suggest) since
it may leave the user with a handle to
serve as an index into the application.
This handle (a button on the screen, a
menu item, a window), when taken ad-
vantage of, can be used to access all the
parts of the application that have to be

FIGURE 1. Creating a customized toolbar for drawing commands in MS Word 6. (1)
Selecting the Tools menu from the menu bar, (2) selecting the Customize menuitem to
open the Customize window, (3) selecting the Drawing toolbar from this window, and
dragging buttons onto a new toolbar at the top.

3

2

1

4

Scandinavian Journal of Information Systems, Vol. 8 [1996], Iss. 2, Art. 5

http://aisel.aisnet.org/sjis/vol8/iss2/5

www.manaraa.com

A. Mørch 67

addressed in order to repair the break-
down. This aspect of tailoring is not well
supported in today’s commercial appli-
cations. In MS Word 6, for example, tai-
loring is initiated by going to a separate
Tools menu and selecting separate
menu items, such as Customize and
Macro. A typical sequence of commands
needed to accomplish a breakdown re-
pair is shown in Figure 1. This sequence
does not create a seamless transition
from use to tailoring because the integra-
tion of user interface and tailoring tools
is coarse-grained. An alternative, finer-
grained approach must be pursued. This
is described next.

3.1. Application unit as the smallest,
yet most general building block
The graphical user interface (GUI) of a
generic application is, from the point of
view of a user, composed of graphical
presentation objects (windows, menus,
buttons, etc.). In a similar way, I propose
that the user interface of a tailorable ge-
neric application is composed of appli-
cation units (Mørch 1995a). Application
Unit (AU) is the term I use for a reusable
software component. It is “deeper” than
a GUI component and consists of the fol-
lowing three parts: (1) presentation ob-
ject (as in a GUI), (2) rationale, and (3)
implementation code (for GUI and appli-
cation code). The first and third parts are
“bridged” by the second part (rationale).
This is described graphically in Figure 2,
and conceptually by the following com-
parison among the three parts:
• Rationale components and presenta-

tion objects are made of the same
kind of material (text, pictures,
graphics, sound, video, animation).

• Presentation objects align with the
structure of an external task-domain
model.

• Rationale components align with the
structure of internal implementation
code.

• Rationale components are different
from implementation code in that the
rationale is not interpreted or exe-
cuted by the computer.

FIGURE 2 The triadic structure of
application units. The three parts
(aspects) in bold-face are accessed by
eventhandlers in the user interface. An
eventhandler is a computational
mechanism that accepts input from the
user, such as a mouse-click or a keyboard
entry, and passes it on to the application.
The relationship between implementation
code and rationale has not yet been
formally developed.

The conceptual building blocks that
have inspired the AU concept are the
MVC (Model-View-Controller) triad in
Smalltalk (Krasner & Pope 1988), the
button-script dyad in HyperCard (Wil-
liams 1987), and the VBX custom con-
trols in Visual Basic (Microsoft 1994).
However, none of the related approaches
have rationale as an integrated part. In
two other papers (Mørch 1995a, Mørch

Presentation object

RationaleImplementation
code

eventhan-

eventhan-

eventhan-
eventhan-

5

Mørch: Evolving a Generic Application into a Domain-oriented Design Envi

Published by AIS Electronic Library (AISeL), 1996

www.manaraa.com

A. Mørch 68

1994), I argue that rationale needs to be
integrated at the same basic building
block level as the other two parts. This
idea was first introduced in the Buttons
project (MacLean et al. 1990), but came
to an end because it was implemented in
an environment that later became obso-
lete (Xerox InterLisp).

The reason for having rationale as a
third part at the same granularity as the
other two parts is to “fill in” the gap be-
tween user interface and implementation
code (Mørch 1995a). This makes a grad-
ual transition from use to tailoring possi-
ble. With application units as the basic
building blocks, this transition is divided
into three levels, each level giving an in-
creased amount of tailoring power
(Mørch 1995):
1. Using the system by interacting with

and customizing presentation objects
in the user interface.

2. Understanding the application by
reading and designing rationale.
Rationale captures the application’s
requirements for design and use.
Rationale is not interpreted by the
computer but meant for human
reflection and to aid comprehension
of the application.

3. Reading and writing implementa-
tion code. New code is added as
extensions of old code. The new
code is compiled (or interpreted) and
executed by the computer.

The price of tailoring power is paid at the
expense of having to master an increased
amount of computational complexity.
This is overcome by arranging the levels
in steps: mastering one level makes the
transition to the next level easier.

To make the transition from use to
tailoring practical, all the three parts of

an application unit should be accessible
from the user interface. To accomplish
this, the presentation object (P-object) of
an AU serves as its handle since the P-
object is the only part that is accessible
during normal use. This handle is trig-
gered when the mouse is pressed or re-
leased on top of the P-object. It accepts
input (events) from the user and passes it
on to the application. The computational
mechanism that parses the input events is
called an eventhandler. Typical event
handlers are mouseDown (for graphical
objects) and mouseUp (for buttons and
menu items). Some P-objects have mul-
tiple event handlers, such as a single cell
in a spreadsheet application. When the
cell receives a single mouse click, the
user can edit the value of the cell, where-
as when the cell receives a double
mouseclick, the user is presented with a
formula for computing the value of the
cell.

An application unit has four event
handlers. First, is the conventional (nor-
mal use) handler. The other three are
handlers for accessing the three parts of
the application unit that have to be ad-
dressed during tailoring. They are distin-
guished from each other by modifier
keys (option, shift, ctrl, cmd).
When selected by a user, the event han-
dlers enable the following tailoring ac-
tions:
0. Executing the functionality associ-

ated with the presentation object
(normal use event, no modifier key)

1. Editing the attribute values of the
presentation object (tailoring event
1; modifier key option)

2. Viewing the rationale associated
with the presentation object and its

6

Scandinavian Journal of Information Systems, Vol. 8 [1996], Iss. 2, Art. 5

http://aisel.aisnet.org/sjis/vol8/iss2/5

www.manaraa.com

A. Mørch 69

implementation code (tailoring event
2; modifier key shift)

3. Reading the implementation code
that defines the functionality of the
presentation object (tailoring event
3; modifier key ctrl)

To view the implementation code under-
neath a menu item, for example, the user
must hold down the ctrl-key while re-
leasing the mouse button on top of the
menu item (referred to as a ctrlMouse-
Up event).

3.2. Three aspects of an application
unit
Why do we need the extra eventhandlers
and why are there three and not two,
four, or even five levels of tailoring?
This section attempts to answer these
two questions, and I start by answering
the second question. We can have more
than three levels of tailoring. Additional
levels can, and should, be added when
the need for an even smoother transition
between user interface and implementa-
tion code is demonstrated. Three levels, I
claim, is the minimum for making end-
user tailoring an alternative to conven-
tional use and professional development.
A previous effort, on which the current
work is based, provided two levels of tai-
loring (levels 1 and 3). It was revealed
that the two levels of tailoring were in-
sufficient to give full support of tailoring
because it created a gap between user in-
terface and programming language that
was difficult for end-users to bridge
(Girgensohn 1992). In response to these
findings, I have added an intermediate
level, rationale, to bridge between the
other two levels.

Another intermediate level is created
by writing macros in a high-level lan-

guage (such as Visual Basic for MS
Word (Microsoft 1994)) and recording
scripts to automate repetitive tasks (such
as AppleScript for the Macintosh (Apple
1993)). This is referred to as end-user
programming (Nardi 1993). It is related,
but not identical, to end-user tailoring.
Macros and scripts are special-purpose
integration languages rather than general
purpose implementation languages. Al-
though integration languages can be
used to create new functionality, the
functionality is not organized in a classi-
fication hierarchy. Instead, these lan-
guages allow high-level expressions to
be recorded, edited and integrated into
the application at run-time. End-user
programming languages are therefore
less powerful (computationally) than
general purpose implementation lan-
guages are, but (more importantly) they
are easier to use. Approaches to tailoring
that start from end-user programming
languages to further bridge the gap be-
tween user interface and programming
language have been developed at the
University of Colorado, Boulder (Di-
Giano 1996, Repenning & Ambach
1996).

To evolve an application from one
task-domain to another may require
making changes at each of the three com-
plexity levels of an application. This is
referred to as tailoring by customization,
integration, and extension, respectively
(Mørch 1995). Each of the three levels is
associated with a unique aspect of an ap-
plication unit. Although they partly over-
lap in scope, the three aspects can be dis-
tinguished from each other. They are re-
ferred to as: aspect-1, aspect-2, and as-
pect-3, and a comparison between them
will be given below. The numbering, in-
stead of proper naming, is meant to help

7

Mørch: Evolving a Generic Application into a Domain-oriented Design Envi

Published by AIS Electronic Library (AISeL), 1996

www.manaraa.com

A. Mørch 70

the reader since it parallels the number-
ing of the three levels of tailoring de-
scribed above. Each of three aspects
needs to be addressed during tailoring
because changing one of them will often
require making changes to the other two
as well. This is illustrated by an example
in Section 4.3.

3.2.1. Aspect-1
Aspect-1 is associated with the presenta-
tion objects of an application unit. These
objects refer to other objects in the real-
world environment outside of the com-
puter system. This external environment
includes the users, their work tasks, and
the organizational context in which they
work. In the area of human-computer in-
teraction this environment is generally
referred to as the task-domain, a term
that is used throughout this paper when
referring to the external environment.
When building a computer system with
graphical, direct manipulation user inter-
faces a goal is to “mirror” the task-do-
main on the computer screen, and the
user interface is this mirror. The mirror
metaphor emphasizes that the user inter-
face is not the task-domain – it is a model
of it. The model may, however, eventual-
ly be part of the task-domain (during
subsequent domain modelling). The de-
gree of resemblance between model and
task-domain will vary depending on how
one chooses to map between the two.
Analyzing a task-domain and building a
model of it that is understandable to end-
users are major concerns of researchers
and practitioners in human-computer in-
teraction and business information sys-
tems. An example of a task-domain is
banking. It includes task-oriented con-
cepts such as: accounts, transactions, de-

posit, withdrawal, debit, credit, etc.
(Burkle et al. 1995, Nygaard 1984).

3.2.2. Aspect-2
Aspect-2 is associated with the rationale
part of an application unit. It is related to
both the user interface (aspect-1) and the
implementation code (aspect-3). Aspect-
2 includes representations gathered from
the task-domain as well as from other do-
mains, but not exclusively the domain of
programming (aspect-3). Aspect-2 rep-
resentations range from informal annota-
tions and conceptual frameworks (cap-
turing subjective experience), to locally
defined requirements (such as company
standards), and up to established theories
and their argumentation (published
works) (Popper 1979). These representa-
tions serve as descriptions of the compu-
ter application, suggesting how one
should use it, what it should do, and why
it should do it. The criteria to use when
deciding whether an aspect-2 representa-
tion is relevant or not is whether or not it
is comprehensible to the end-users of the
application. Aspect-2 representations
should therefore be seen as a way to help
end-users to better understand how to
use the application (Caroll 1995,
Winograd 1996), as well as what the de-
sign decisions that lead to its construc-
tion were (Fischer et al. 1995, Gamma et
al. 1995, McCall 1986, Moran & Caroll
1996).

3.2.3. Aspect-3
Aspect-3 is associated with the imple-
mentation code of an application unit.
Implementation code is a prescription (a
sequence of instructions) for how the
functionality of an application unit shall
be executed (i.e., how it actually works),
and it must follow the rules of a well-de-

8

Scandinavian Journal of Information Systems, Vol. 8 [1996], Iss. 2, Art. 5

http://aisel.aisnet.org/sjis/vol8/iss2/5

www.manaraa.com

A. Mørch 71

fined grammar. When the code is execut-
ed, the user gets an understanding of
what it did by measuring its state (at-
tribute values) and behavior (method
calls), for example by debugging the pro-
gram. Aspect-3 includes a set of mecha-
nisms and programming language con-
structs for writing executable code from
scratch as well as for writing extensions
to old code. When an application is im-
plemented in a modern object-oriented
programming language, such as BETA
(Madsen et al. 1993) and JAVA (Pew
1996), typical aspect-3 concepts are:
class, subclass, superclass, inheritance,
virtual binding, attribute, method,
eventhandler, composition, object in-
stance, multithreading, conditionals; as
well as the rules for combining them.
Many examples of these concepts al-
ready exist in generic applications, and if
taken advantage of, they can be copied,
pasted, and modified by end-users dur-
ing tailoring of implementation code.
The extensions themselves are connect-
ed to their predecessor code by inherit-
ance.

4. An illustrative example
This section illustrates how to use the
method and tools described in the previ-
ous section to evolve a generic applica-
tion (BasicDraw) into a domain-oriented
design environment (KitchenDesign).
The next two subsections (4.1 & 4.2) in-
troduce the notions of generic applica-
tions and domain-oriented design envi-
ronments. The subsequent subsection
(4.3) demonstrates how to evolve Ba-
sicDraw into KitchenDesign by tailoring
it at the three levels of complexity asso-
ciated with the three aspects of an appli-
cation unit.

4.1. Implementing a tailorable generic
application
BETA (Madsen et al. 1993) is the object-
oriented programming language used as
the implementation language in this
project. BETA’s syntax does not distin-
guish between the structure of a type, a
class, an attribute definition, or a meth-
od. They are unified into patterns. The
BETA pattern concept is a general ab-
straction mechanism for writing object-
oriented programs. This is a result of the
fact that a pattern definition has two (mu-
tually exclusive) parts: an attribute-part
and an action-part. The attribute-part de-

iRectangle: BasicMenuItem (* BasicMenuItem is an abstract pattern
*)
(# (* a menuitem for creating rectangle objects *)
 presentation::< (# do 'Rectangle' -> title[]; INNER #);
 eventHandler::<
 (# (* four attributes of eventhandler *)
 mouseUp::< (* do execute the functionality -- create a rec-
tangle *)
 optionMouseUp::< (* do display the presentation editor *)
 shiftMouseUp::< (* do display the rationale of the AU *)
 ctrlMouseUp::< (* do display the functionality*)
 #)

9

Mørch: Evolving a Generic Application into a Domain-oriented Design Envi

Published by AIS Electronic Library (AISeL), 1996

www.manaraa.com

A. Mørch 72

fines the properties of the pattern, and
the action-part defines an action (a meth-
od) that is automatically invoked when
the pattern is instantiated to generate ob-
jects.

To be consistent with conventional
object-oriented terminology, it is cus-
tomary (in the BETA community) to use
the terms class-pattern for a convention-
al class, pattern-attribute for a conven-
tional attribute, and procedure-pattern
for a conventional method. However, the
reader should keep in mind that they all
have the same general structure (en-
closed by the ‘(#’ and ‘#)’ markers),
and that they all can serve as superpat-
terns for inheritance. A class-pattern is a

pattern with a dominant attribute-part,
and a procedure-pattern is a pattern with
a dominant action-part. Pattern-at-
tributes can be of either type. Pattern-at-
tributes can also be virtual, which means
that they can be further bound (extended)
in subclasses of the class in which they
were first defined. The combination of
inheritance and virtual binding for pro-
cedure-patterns makes extension (inher-
itance) of methods without overriding
possible (Kristensen et al. 1987). This is
the mechanism that is used to support tai-
loring of implementation code.

An example of a BETA pattern is the
iRectangle menu-item shown on the

FIGURE 3. BasicDraw is a tailorable generic drawing program. Each presentation object
in the user interface serves as a “handle” for both use and tailoring. General tailoring
tools are available from the Tailor menu

10

Scandinavian Journal of Information Systems, Vol. 8 [1996], Iss. 2, Art. 5

http://aisel.aisnet.org/sjis/vol8/iss2/5

www.manaraa.com

A. Mørch 73

previous page (text in italics are com-
ments).

iRectangle defines the code of an
application unit (Mørch 1995a). An ap-
plication unit is implemented as a BETA
InterfaceObject pattern with four
eventhandlers. The basic eventhandler
mechanism of a conventional user inter-
face object has been extended to make its
presentation object, implementation
code, and rationale accessible from the
user interface. Application units thus dif-
fer from the patterns that are meant for
implementation purposes only. The latter
kind defines the “internal machinery” of
an application and have to be accessed
from within the application. They have
no “handles” in the user interface and
therefore are beyond the scope of end-
user tailoring. A set of concrete (instanti-
ated) InterfaceObject patterns (such
as iRectangle) form part of a tailora-
ble generic application. The generic ap-
plication that will serve as an example in
this paper is BasicDraw (see Figure 3). It
is a tailorable generic drawing program.
Its built-in tailoring tools are currently
being used to evolve it into various do-
main-oriented design environments.

4.2. Domain-oriented design
environments
Domain-oriented design environments
are applications developed for well-de-
fined task-domains (Fischer 1989). In
the context of this work, they are seen as
specialized generic applications, and
they range from financial planning sys-
tems (specialized spreadsheets), collabo-
rative writing systems (specialized word
processors), message browsers and
meeting scheduling systems (specialized
e-mail systems), and home planning and
network design environments (special-

ized drawing programs). In addition to
their domain-specificity, domain-orient-
ed design environments have additional
components that are not part of generic
applications. One such component is a
knowledge-based critiquing mechanism.
Knowledge-based critics are a type of in-
telligent agents, and they make sense in
well-defined task-domains because they
use the semantics of the domain to give
feedback to the users during interaction
with the system. An example of such a
system is Janus, a domain-oriented de-
sign environment for kitchen design
(Fischer et al. 1989).

Building domain-oriented design en-
vironments from scratch is time consum-
ing. It is therefore important to have al-
ternative approaches for developing
them. End-user tailoring is one such al-
ternative approach. It starts the develop-
ment of a domain-oriented design envi-
ronment from an already existing gener-
ic application. It is estimated that this ap-
proach is faster than developing the
domain-oriented system from low-level
building blocks (although no quantita-
tive measurements have yet been done),
and that the code savings will be substan-
tial compared with the amount of code
needed to develop the underlying gener-
ic application (measurements done based
on the current example). There are other
alternative approaches to building do-
main-oriented design environments. One
such approach is building them from pre-
defined, high-level components. This
has not been addressed in this work, but
a conceptual comparison to framework
instantiation is given in the next section.

11

Mørch: Evolving a Generic Application into a Domain-oriented Design Envi

Published by AIS Electronic Library (AISeL), 1996

www.manaraa.com

A. Mørch 74

4.3. Evolving BasicDraw into
KitchenDesign

4.3.1. Tailoring of user interface
(Aspect-1)
Kitchen design is the task-domain in this
example and hence gives the require-
ments for the “vocabulary” to be mod-
eled in the user interface of the applica-
tion. Professional kitchen designers
draw kitchen floorplans for clients. Their
professional language includes graphical

symbols for appliances, such as sink,
stove, and refrigerator; standard sizes of
appliances and cabinets; and a set of ab-
stract concepts such as the “work trian-
gle,” which denotes the center-front dis-
tance between sink, stove, and refrigera-
tor.

Customization is the level of tailor-
ing where the user can edit the attribute
values of application units (Mørch
1995). Examples of attributes that can be
edited by customization are width and

FIGURE 4. Tailoring the user interface of BasicDraw by editing attribute values of three
different application units (“Shapes” menu, “Rectangle” menuitem, and “Rectangle”
shape). Presentation editors are accessed by a single mouse click together with the option
key on each presentation object (eventhandlers for menus have to be prefixed by a second
modifier key, cmd, to distinguish them from the eventhandlers for menu items).

Type:

optionMouseDown

12

Scandinavian Journal of Information Systems, Vol. 8 [1996], Iss. 2, Art. 5

http://aisel.aisnet.org/sjis/vol8/iss2/5

www.manaraa.com

A. Mørch 75

height of graphical shapes and title
of menus and menu items (Figure 4). All
the presentation objects in the user inter-
face of BasicDraw can be edited in this
way.

4.3.2. Tailoring of rationale (Aspect-2)
The scale command in BasicDraw al-
lows the users to re-size graphical shapes
in arbitrary pixel sizes (see Figure 5). Ar-
bitrary re-sizing of graphical shapes may
create a problem (breakdown) for kitch-
en designers because all kitchen appli-
ances and cabinets come in fixed sizes.

FIGURE 5. Top part: The existing rationale of the scale command is accessed by a single
mouse click together with the shift key on the P-object (the scaleObject handler of
BasicRectangle). Bottom part: Integration of four new rationales to capture the design
requirements of a new scale command for kitchen design. The content of each rationale
viewer is stored as a Macintosh PICT file, which can be created and edited in most
drawing editors or captured by screen snapshots from other sources (such as the WWW).
Rationale is not interpreted by the computer (i.e., it has no formal syntax). Its primary
purpose is to aid human reflection.

shiftMouseDown

Existing rationale of the Scale command

Four
rationales
added
to record
new
requirements
for the
Scale command

1

2

13

Mørch: Evolving a Generic Application into a Domain-oriented Design Envi

Published by AIS Electronic Library (AISeL), 1996

www.manaraa.com

A. Mørch 76

FIGURE 6. The functionality of BasicDraw is accessed from P-objects. A single mouse click
together with the ctrl key on a P-object gives the user access to its underlying
implementation code (by first getting the pattern name of the object, and then searching
for its name in the file it is defined). The leftmost window (implementation viewer)
displays the code, usually a method, whereas the rightmost window (extension editor)
presents an editor, which allows the user to write new code. When the extension editor is
opened, a template (based on the current object) is presented to the user. The user can
rename the template class (in this case to KitchenCabinet), and then write the extension
code (from ScaleObject::< and down). The new code does not override, but extends the old
code. The point of extension is identified by the INNER construct in the parent method
(not visible).

1
2

Extensions
are written in Beta
based on requirements
in the previous Figure

14

Scandinavian Journal of Information Systems, Vol. 8 [1996], Iss. 2, Art. 5

http://aisel.aisnet.org/sjis/vol8/iss2/5

www.manaraa.com

A. Mørch 77

This identifies new design requirements
for the application that need to be cap-
tured to record the rationale for a new
scale command. These requirements, if
saved and integrated with the applica-
tion, will help later tailors to better com-
prehend the application. Four different
rationales that captures the design deci-
sions for the scale command are shown
in Figure 5. They are examples of aspect-
2 representations: information taken
from different problem domains, includ-

ing the task-domain (kitchen design),
other relevant problem domains (modu-
lar arithmetic), and the domain of pro-
gramming (BETA inheritance hierar-
chy).

Aspect-2 representations are present-
ed in rationale viewers. The viewers are
windows that can contain Macintosh re-
source files of type PICT (bitmap pic-
tures). The rationale that is part of the ge-
neric application (BasicDraw) has been
created with the Macintosh resource edi-

FIGURE 7. KitchenDesign is a domain-oriented design environment for kitchen design. It
was built by tailoring of BasicDraw. The “Symbols” menu is a subclass of the “Shapes”
menu. Each of the menu-items in the “Symbols” menu is a subclass of iRectangle that was
shown in Section 4.1. Each of the graphical objects in the drawing window is a subclass of
BasicRectangle. They differ in the Presentation attribute and in the scaleObject method.
The “Critique” menu is a more complex extension built as a subclass of “Operations”
menu. It consists of menu-items for critiquing relationships between graphical objects
according to the rules of kitchen design (sink next-to dishwasher, etc.).

15

Mørch: Evolving a Generic Application into a Domain-oriented Design Envi

Published by AIS Electronic Library (AISeL), 1996

www.manaraa.com

A. Mørch 78

tor, ResEdit (Alley & Strange 1991).
When new rationales are added, which
can be accomplished by copying pictures
and diagrams from external sources, the
rationale is pasted onto a blank viewer
and saved together with the old rational-
es in an existing resource file. Old re-
sources are not meant to be deleted be-
cause they model the design history of
the artifact (Moran & Caroll 1996).

4.3.3. Tailoring of implementation code
(Aspect-3)
In conjunction with capturing design re-
quirements, we need to write the imple-
mentation code that will execute the
functionality. This is shown in Figure 6
and accomplished in BETA (Madsen et
al. 1993) by extension of existing imple-
mentation code by subclassing (inherit-
ance) and virtual binding (Kristensen et
al. 1987). Examples of extensible imple-
mentation code in BasicDraw are the
graphical shape classes BasicOval,
BasicRectangle, and BasicTrian-
gle. Parts of their functionality are de-
fined as virtual procedure-patterns (ex-
tensible methods), such as scaleOb-
ject, rotateObject, copyObject,
and deleteObject. This functionality
can be extended in subclasses of the
graphical shapes the methods are parts
of.

The actual “points” in the old code
where extensions are added are identi-
fied by the BETA INNER statement. This
statement needs to be placed by develop-
ers at appropriate areas in the action-part
of extensible methods where new code
can be added. This will allow end-users
to continue the design started by the orig-
inal developers—adding their own per-
sonal extensions to it—at the point
where the previous developers ended.

For example, to create a kitchen-cabinet
symbol with advanced scale functionali-
ty, can be done by creating a subclass of
one of the classes scaleObject is part
of and then extending scaleObject by
adding new statements. In the current ex-
ample, this was accomplished by choos-
ing BasicRectangle as the superclass
since it is the graphical shape that most
closely resembles a kitchen cabinet sym-
bol (in looks and behavior). Actually, all
the architectural symbols in KitchenDe-
sign have been implemented as subclass-
es of BasicRectangle (Figure 7). This
demonstrates that it is possible to evolve
a generic class (BasicRectangle)
from one task-domain (graphics draw-
ing) into a specialized class (Kitchen-
Cabinet) for a radically different task-
domain (kitchen design) by making
small, incremental changes to the old im-
plementation code.

The extension code added to Ba-
sicDraw is created in a separate exten-
sion editor (the rightmost window in Fig-
ure 6), and saved in an extension file. Af-
ter extension files have been saved, they
must be compiled and linked with the ex-
isting application. I have created exten-
sion files for the following categories of
functionality: windows, shapes, menus,
menu items, and initializations. Exten-
sion code can also be added to previous
extensions, which demonstrates that tai-
loring goes beyond “one-shot” frame-
work instantiation (Vlissides & Linton
1990). Although users are not allowed to
delete generic implementation code,
they are allowed to delete their own pre-
vious extensions.

16

Scandinavian Journal of Information Systems, Vol. 8 [1996], Iss. 2, Art. 5

http://aisel.aisnet.org/sjis/vol8/iss2/5

www.manaraa.com

A. Mørch 79

5. Empirical evaluation
BasicDraw has been tested with end-us-
ers in an experiment. The experiment
served two purposes. The primary pur-
pose was to test the usability of the tai-
loring tools integrated into BasicDraw.
The second purpose was to test two ex-
perimental hypotheses:
H1.Presenting rationale can help end-

users to understand the implementa-
tion code of application units.

H2.Having access to the implementation
code of old application units will
make it easier to write implementa-
tion code of new application units
that builds on the old.

Both purposes were tested in the same
experiment, but by using different tech-
niques. Usability was tested by a video-
recorded thinking-aloud experiment, and
the two experimental hypotheses were
tested by analyzing data from a question-
naire.

The users participating in the experi-
ment were twelve college-level (social
informatics) students. They had all taken
an introductory course in object-oriented
programming, but some of them had not
written any programs in several years.
The users completed two usability tasks
in complexity comparable to the exam-
ple I gave in the previous section. The
first task was to make BasicRectan-
gle into a square, and the second task
was to modify the “Rotate” command to
make the rectangle rotate closer to its
axis of rotation.

The usability test showed that the us-
ers were able to locate application units,
test their functionality, read the rationale,
and read the implementation code. Users
adapted application units (a graphics

shape and menu commands) by tailoring
them at three levels of complexity. It was
a gradual increase in complexity when
going from one level to the next: it was
more difficult to write program code
than it was to modify presentation ob-
jects, and the difficulty of creating ra-
tionale was somewhere in between the
other two. The main difficulties users
had when they were creating rationale
were: (1) how to design it, and (2) how to
map the design to corresponding con-
cepts in the code (e.g. variables), and the
main difficulties users had when writing
code were related to: (1) syntax of the
BETA language, (2) lack of access to
necessary variables and functions from
superpatterns, and (3) visualizing the
flow of control from superpattern to sub-
pattern.

The protocol data in Table 1 shows
user #9 while writing the implementa-
tion code for the second task. The data
shows a repeated switching back and
forth between writing code and looking
at the rationale for the old code. This be-
havior was typical among the users when
they wrote new code that built on old
code. The rationale served as a resource
for comprehension during programming,
and the users reported that it was easier
to understand the code when they had ac-
cess to rationale because the rationale
gave a view of the code that was different
from what the code itself could give.

There were two forms of communi-
cation going on between the developer
(the author) and the users: direct face-to-
face communication and indirect com-
munication mediated by the system.
Face-to-face communication was initiat-
ed when the users asked for help and
when the evaluator gave help (evidenced
by the protocol). Second, there was an

17

Mørch: Evolving a Generic Application into a Domain-oriented Design Envi

Published by AIS Electronic Library (AISeL), 1996

www.manaraa.com

A. Mørch 80

indirect communication mediated by the
computer system itself. This latter form
of communication was revealed in the
protocols when the users made deictic
references to the various windows of the
system (see Table 1).

TABLE 1. Protocol segment of user #9. It
illustrates (by the deictic references) the
repeated switching back and forth
between writing new code and looking at
the rationale for the old code.

Time Verbal protocol:
user #9 in task II

Deictic
reference
s

1:17:05 Let me see. I will
take Y plus ...

Writes
code

Let me see, for
180, it goes up
here. I have to
add Height to it
and put the result
into the new Y.

Looks at
rationale
Writes
code

And the X stays
in the same posi-
tion.

Now we are in a
lying-box posi-
tion. When it is
rotated it
becomes 270
degrees.

Looks at
rationale

Let me see, ... Writes
code

What has hap-
pened here must
be changed by
pushing it to the
left towards the
one we had at
180.

Looks at
rationale

And to do that we
keep the Y the
same, but for the
X we subtract the
Width.

An example of indirect communica-
tion is illustrated in Table 1 by user #9
when he introduced the concepts of “ly-
ing-box position” and “lift it up” while
simultaneously talking and pointing to
the screen. These concepts were not sug-
gested by the author nor the problem de-
scription given to him, but rather by the
user himself in interaction with the sys-
tem. He invented those concepts as he
tried to understand the problem and how
to solve it. The process of invention was
accompanied by deictic references to the
windows in the system: testing how a
certain function operated, looking at the
rationale, reading the old program code,
writing new code, building a model of
the mapping between rationale and code,
etc. This form of indirect communication
between developer and user can be de-
scribed as a “reflective conversation

X minus Width is
put into X.

Writes
code

Then we have the
last one. If Angle
is 0, then ...

It means that we
have been at 270
and we have to
“lift” it up again,
or subtract
Height from the
Y.

Looks at
rationale

1:20:11 Y minus Height
is set to Y.

Writes
code

TABLE 1. Protocol segment of user #9. It
illustrates (by the deictic references) the
repeated switching back and forth
between writing new code and looking at
the rationale for the old code.

Time Verbal protocol:
user #9 in task II

Deictic
reference
s

18

Scandinavian Journal of Information Systems, Vol. 8 [1996], Iss. 2, Art. 5

http://aisel.aisnet.org/sjis/vol8/iss2/5

www.manaraa.com

A. Mørch 81

with the materials of a design situation”
(Schön 1992).

After the usability test the users an-
swered a questionnaire (Table 2). The
questionnaire followed an established
schema for user interface evaluation,
Questionnaire for User Interface Satis-
faction (QUIS) (Chin et al. 1988), and
was supplemented with tailor-specific
questions. The tailor-specific questions
are a modified version of a set of ques-
tions developed at the University of
Colorado, Boulder for testing of end-
user programmable applications (Di-
Giano 1996). To analyze the data, we
used the Spearman rank test for correla-
tion of two data sets (Dix et al. 1993,
Greene & d’Oliveira 1981). This tech-
nique is judged to be appropriate when
data values can be rank ordered and
when there is only one experimental con-
dition to be tested (no control group).

The Spearman test results in a correla-
tion probability among two variables and
has to exceed a minimum value for the
correlation to be reported as significant.
The minimal value depends on the
number of participants in the experi-
ment. When the correlation coefficient
exceeded 0.506 with p < 0.05 for N = 12
the results were reported as significant
and displayed in a scatter diagram. It is
generally recommended that at least ten
(N = 10) users participate in an experi-
ment that is analyzed by statistical meth-
ods (Dix et al. 1993).

The data sets from questions 6 and 7
in Table 2 are plotted in the scattergram
of Figure 8. It represents the relationship
between the difficulty of understanding
program code (abbreviated to “under-
standing old code” and measured along
the Y-axis) and the usefulness of having
rationale as an aid for the understanding

TABLE 2. Selected questions about end-user tailoring from a questionnaire given to the
users after they had completed the usability test.

Questionnaire User responses

Selected questions about end-user tailoring median range N

3. How difficult was it to modify user interface objects?
(1 = very difficult; 4 = sometimes difficult; 7 = not at all diffi-
cult)

6 5-7 12

5. How difficult was it to create new rationale?
(1 = very difficult; 4 = sometimes difficult; 7 = not at all diffi-
cult)

5 3-7 12

6. How difficult was it to understand the old program code?
(1 = very difficult; 4 = sometimes difficult; 7 = not at all diffi-
cult)

4.5 1-6 12

7. How useful was it to have rationale as an aid to understand
program code
(1 = totally useless; 4 = sometimes useful; 7 = very useful)

4.5 2-7 12

8. How difficult was it to create new program code?
(1 = very difficult; 4 = sometimes difficult; 7 = not at all diffi-
cult)

5.5 3-7 12

9. How useful was it to look at/copy from old code when writing
new code?
(1 = totally useless; 4 = sometimes useful; 7 = very useful)

6.5 5-7 12

19

Mørch: Evolving a Generic Application into a Domain-oriented Design Envi

Published by AIS Electronic Library (AISeL), 1996

www.manaraa.com

A. Mørch 82

(abbreviated to “usefulness of rationale”
and measured along the X-axis). This re-
lationship shows a significant positive
correlation of 0.61 (p < 0.025; N = 12).

The data shows that when the code
was easy to understand, the rationale was
particularly useful, or alternatively, the
more useful the rationale was, the more
easier it was to understand the code. It
also shows that when the users didn’t
think that the rationale was any useful,
they also thought it was difficult to un-
derstand the code, or alternatively, that
when users thought the program code
was difficult to understand, they also
thought that the rationale was not very
useful.

The latter reading points out a poten-
tial weakness of rationale: its complexity
is proportional to the complexity of the
program code, and for users to acknowl-
edge the usefulness of rationale they also
have to understand the code. This identi-
fies an area for further work on design
rationale since its complexity ought to be
within the reach of end-users regardless
of the complexity of the code; assuming
that users have introductory level skills
in programming. In other words, ration-
ale ought to be useful for the comprehen-
sion of complex programs as well as for
the comprehension of simple programs.
What the threshold level of complexity
should be (if at all determinable), how
one should present rationale so that it

FIGURE 8. Relationship between understanding old code (Question 6) and usefulness of
rationale to aid this understanding (Question 7) shows a significant positive correlation of
0.61 (p < 0.025; N = 12). The small digits next to each point is user-id number, and an
enlarged point indicates that more than one respondent had that combination of answers.
A high correlation produces a clear diagonal in the diagram

Use fulne ss of rat ionale

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7

1

10

9

7

6

5, 8

4

3

2

12

11

Very
difficult

Not at all
difficult

Totally
useless

Very
useful

Very
difficult

Not at all
difficult

Totally
useless

TVery
usefulUsefulness of rationale

U
nd

er
st

an
di

ng
 o

f o
ld

co

de

20

Scandinavian Journal of Information Systems, Vol. 8 [1996], Iss. 2, Art. 5

http://aisel.aisnet.org/sjis/vol8/iss2/5

www.manaraa.com

A. Mørch 83

does not reach beyond this level, and
how to better measure the usefulness of
rationale from this perspective need to be
further investigated.

The major factor contributing to the
writing of new code was the access to old
code for copy-paste-and-modify (Ques-
tion 9 in Table 2; median 6.5/7). There
was no direct correlation between the
usefulness of rationale and the writing of
new code, but there was an indirect rela-
tionship since I found a positive correla-
tion of 0.61 (p < 0.025; N = 12) between
the useful of rationale for the under-
standing of old code (Figure 8), and a
slightly less positive correlation of 0.59
(p < 0.05; N = 12) between the under-
standing of old code and the writing of
new code (Question 6 and Question 8 in
Table 2). This indicates that program
comprehension and program extension
may be related. This also needs to be fur-
ther investigated.

6. Current limitations
The following four steps have to be taken
for each new graphical shape application
unit to be added to BasicDraw: (1) create
a shape class, (2) create a menu item to
instantiate the shape, (3) create a menu to
instantiate the menuitem, and (4) create
an extension to instantiate the menu dur-
ing initialization of the program. All the
four steps can be accomplished by sim-
ple extension in the same way Kitch-
enCabinet was constructed from
BasicRectangle. The last three steps,
however, require much less code to be
written than the first step, and it can part-
ly be automated by the computer. The re-
maining tailoring can be done by cus-
tomization of menu and menuitem titles.

Only the first step was tested in the ex-
periment.

What is more complicated, however,
are the limitations imposed by the exist-
ing classification hierarchy. There are
generally two types of limitations: over-
constrained hierarchies and under-con-
strained hierarchies. Over-constrained
hierarchies cause overly specialized
(myopic) evolution to occur, whereas un-
der-constrained hierarchies may prevent
evolution altogether because there are no
concrete classes to build the extensions
on. If we want to add a palette or a criti-
quing component to BasicDraw, for ex-
ample, we need to write more code than
we need to write for simple extension
since the extensions have to be built
more or less from scratch. This type of
extension is referred to as complex ex-
tension (Mørch 1995).

Tailoring, as presented in this paper,
is associated with concrete presentation
objects accessible in the user interface.
However, in some problem situations the
user will not be able to associate the
problem with a particular P-object. The
user may not even be able to describe the
problem at all, or if it can be described, it
may be in abstract terms that are not re-
lated to the aspect-1 language of P-ob-
jects. In such cases, the user needs help
in formulating the problem before it can
be linked to concrete P-objects in the
user interface.

An open problem for further investi-
gation is whether or not there should be a
well-defined mapping between imple-
mentation code and design rationale and
if there should be how it can be support-
ed by computational means. In the cur-
rent work, this has not been developed,
but some connections between imple-
mentation code and rationale have been

21

Mørch: Evolving a Generic Application into a Domain-oriented Design Envi

Published by AIS Electronic Library (AISeL), 1996

www.manaraa.com

A. Mørch 84

identified. There are parts of the ration-
ale that are directly reflected in the im-
plementation code and vice versa.
Whether these connections should be
made more visible needs to be further in-
vestigated. An approach to building such
links for a particular code example has
been successfully demonstrated by Red-
miles (Redmiles 1992). To generalize
from this, however, may be difficult, un-
less constraints are put on the rationale,
such as formalizing it and making it exe-
cutable. This will dismay much of the
purpose of this work, which is to help
end-users in capturing rationales from
arbitrarily chosen domains, with the
chief purpose of helping them under-
stand the application better, not the other
way around.

7. General discussion
This section is formulated as a dialog,
between the author and the future readers
of this article. It is meant to serve as a
starting point for a discussion yet to take
place. It starts by me (author and first
reader) making a first move by giving
answers to some questions that have
been in my mind during the writing of
this article.
• Question: What makes the choice of

kitchen design a realistic example to
illustrate end-user tailoring, i.e., are
kitchen designers likely to build spe-
cialized applications in this way?

• Answer: The example is meant to
illustrate a method: it is not a case
study. The example and the method
should be thought of as conjectural
attempts at a solution to problems in
software reuse and requirements

capture. The solution can be
improved as new problems are dis-
covered.

• Follow-up question: Why not start
the tailoring process from a special-
ized application, instead of a generic
application. There are many special-
ized applications for home design?

• Answer 1: Tailoring, as presented in
this paper, will work equally well for
specialized applications as for
generic ones (assuming tailoring
tools have been built into them). It
may even be simpler to extend a spe-
cialized application since the number
of extensions is likely to be smaller.
However, it may be more difficult to
customize a specialized application
since it is usable by fewer users.

• Answer 2: Traditionally, tailoring
has been associated with “touching
up” the look and feel of the user
interface of an application. In the
current work I want to demonstrate
that tailoring can go deeper than the
user interface (but not so deep that it
becomes irrelevant for end-users).
This is best illustrated when the
application can evolve from one
task-domain to another.

• Question: What are the implications
of moving outside the intentions of
the original program (e.g., a rectan-
gle made into a kitchen cabinet)?

• Answer 1: From the standpoint of
the user interface there is no differ-
ence between a rectangle shape and a
kitchen-cabinet symbol: they have
identical P-objects. A subjective dif-
ference (a “use distance”) is created
by the user when he or she makes
references to other objects (rectan-

22

Scandinavian Journal of Information Systems, Vol. 8 [1996], Iss. 2, Art. 5

http://aisel.aisnet.org/sjis/vol8/iss2/5

www.manaraa.com

A. Mørch 85

gles, circles, and triangles; or cabi-
nets, sinks, and stoves). An objective
difference (a “design distance”)
already exists in the underlying
implementation code.

• Answer 2: Creative (non-myopic)
application evolution is difficult with
rigid application frameworks and
class hierarchies. The end-user
should therefore be encouraged to
transcend existing implementation
structures as long as this does not
corrupt the old code. This requires
programming languages that sup-
port type-safe extensions. This is
possible with object-oriented lan-
guages such as BETA and JAVA. In
the BETA example presented, the
user was not allowed to change the
old code, only to extend it.

• Question: Why not use an end-user
programming language such as App-
leScript or Visual Basic instead of
(or in addition to) an object-oriented
programming language?

• Answer 1: Language mechanisms
such as subclassing and virtual bind-
ing are not available in most end-
user programming languages. These
language mechanisms are needed to
support application evolution at the
implementation level where new
classes of functionality are con-
structed from old ones.

• Answer 2: Interpreted, end-user pro-
gramming languages provide an
important intermediate level of tai-
loring, and should be integrated with
compiled implementation languages.
This is, to the best of my knowledge,
not possible in BETA. It has there-
fore not been addressed in the cur-
rent work.

• Question: The term “implementation
code” is confusing. There are usually
two kinds of implementation code
associated with an interactive sys-
tem: implementation code for user
interface and implementation code
for functionality. How do you distin-
guish between the two?

• Answer: I deliberately try to dissoci-
ate the user interface from the imple-
mentation code and other aspect-3
concepts. I want to make a distinc-
tion between the user interface of the
running system, on the one hand,
and all the implementation code that
makes it work, on the other hand.
This distinction will allow the end-
user to design and customize the
user interface in terms derived from
the task-domain rather than in terms
derived from a programming lan-
guage. All the implementation code
(for both user interface and function-
ality) is defined as reusable classes
(BETA patterns). They implement
the GUI widgets (menus, menu-
items, windows, and graphical
shapes). The functionality is invoked
from eventhandlers defined as meth-
ods on the GUI classes. The func-
tionality is also defined as methods
on the classes.

• Question: In the example shown in
the paper, the same person (the
author) both built and tailored the
generic application. Doesn’t this vio-
late the assumptions behind end-user
tailoring?

• Answer: Yes and No. It satisfies the
requirement that further develop-
ment takes place separated in time
and geographical location. Basic-
Draw was developed by the author

23

Mørch: Evolving a Generic Application into a Domain-oriented Design Envi

Published by AIS Electronic Library (AISeL), 1996

www.manaraa.com

A. Mørch 86

in Oslo during the spring of 95 and
tailored by the author in Boulder
during the spring of 96. It needs to
be tested empirically by other end-
users. This is part of future work.

8. Conclusions
End-user tailoring is the process of
adapting generic software applications to
the specific needs of a user organization.
This paper describes how to build and in-
tegrate tools to accomplish this. An elab-
orated example demonstrated how to tai-
lor (evolve) a generic application (for
graphics drawing) into a design environ-
ment for a radically different task-do-
main (kitchen design).

A key concept in this work is the ap-
plication unit (AU). An AU is the small-
est, yet most general building block of a
tailorable, object-oriented application. It
has three separate aspects: (1) presenta-
tion object, (2) rationale, and (3) imple-
mentation code. The three aspects are ac-
cessed from the user interface of the arti-
fact, and each aspect needs to be tailored
when evolving the application from one

task-domain to another. End-user tailor-
ing varies in complexity depending on
what aspect is addressed.

End-user tailoring in the step size of
an application unit provides a solution to
problems in software reuse and require-
ments capture: how to locate artifacts for
reuse (by using eventhandlers defined on
application units), how to comprehend
artifacts (by using the application and
reading its rationale), and how to inte-
grate and extend artifacts (designing new
rationale and constructing new subclass-
es from concrete classes already defined
in the generic application).

The generic application BasicDraw
was used as an example. It is implement-
ed in the BETA programming language
on a Macintosh computer using the Mac-
Env application framework (Figure 9)
(Knudsen et al. 1993). BasicDraw itself
consists of approximately 200 Kbytes of
source code, whereas the domain-orient-
ed extensions for building the kitchen
design environment consist of 26 Kbytes
of source code. An additional overhead
was needed to manage resource files and
to capture design rationale. The general
recommendation I suggest is that if the

FIGURE 9. BETA extension layers and size of implementation code defining the structure
of the KitchenDesign environment. Each extension layer builds on the layer below, and at
each layer there can be several alternative extensions (not shown).

Implementation base layer

Application framework

Tailorable generic application

Domain-oriented extensions

Extension layer Implementation code

Domain-oriented patterns (26Kb)

Mostly abstract patterns

Concrete patterns (200Kb)

Programming language

System

BETA

BasicDraw

MacEnv

MacApp

KitchenDesign

24

Scandinavian Journal of Information Systems, Vol. 8 [1996], Iss. 2, Art. 5

http://aisel.aisnet.org/sjis/vol8/iss2/5

www.manaraa.com

A. Mørch 87

combined work of writing the extension
code and capturing the associated ration-
ale is less than the total work involved in
writing a domain-oriented design envi-
ronment from scratch, end-user tailoring
should be considered an alternative ap-
proach to building domain-oriented de-
sign environments.

Acknowledgments
This paper was written during the spring
of 1996 while the author was a visiting
researcher at the Center for LifeLong
Learning and Design at the University of
Colorado, Boulder. Gerhard Fischer has
inspired much of the this work. The pa-
per was presented in a working group at
the IRIS-19 conference in Løkeberg,
Sweden, August 1996 and benefited
from discussions with the other group
members (Gro Bjerknes, Bo Dahlbom,
Joan Greenbaum, Liisa von Hellens, Ju-
hani Iivari, Steinar Kristoffersen, Tarja
Kuosa, Fredrik Ljungberg, Kristen Ny-
gaard, Adelakun Olayele). They gave
useful feedback that led to this revised
version. This work has been sponsored
financially by a Dr. Scient stipend from
the Research Council of Norway under
grant no. 100618/410.

References
Alley, P. and Strange, C. ResEdit Complete.

Addison-Wesley, Reading, MA. 1991.
Angeline, P.J. (Ed.) Evolution Revolution:

An Introduction to this Special Track on
Genetic and Evolutionary Programming.
IEEE Expert 10, 3 (June 1995), 6-10.

Apple Computer, Inc. AppleScript Language
Guide. Addison-Wesley, Reading MA,
1993.

Biggerstaff, T. Design Recovery for Mainte-
nance and Reuse. IEEE Computer 22, 7
(July 1989), 36-49.

Bjerknes, G., Bratteteig, T. and Espeseth, T.
Evolution of Finished Computer Systems:
The Dilemma of Enhancement. Scandina-
vian Journal of Information Systems. 3
(1991), 25-45.

Bjerknes, G., Ehn, P. and Kyng, M (eds.).
Computers and Democracy: A Scandina-
vian Challenge. Averbury, Aldershot,
1987.

Burkle, U., Gryczan, G. and Züllighoven, H.
Object-Oriented System Development in
a Banking Project: Methodology, Experi-
ence, and Conclusions. Human-Computer
Interaction 10, 2-3 (1995) 293-336

Carroll, J.M. Scenario-based Design: Envi-
sioning Work and Technology in Systems
Development. John Wiley & Sons, New
York, 1995.

Chin, J.P., Diehl, V.A. and Norman, K.L.
Development of an Instrument Measuring
User Satisfaction of the Human-Computer
Interface. Proceedings CHI’88 Human
Factors in Computing Systems (Washing-
ton, 15-18 May 1988), ACM Press, 213-
218.

DiGiano, C.J. Self-disclosing Design Tools:
An Incremental Approach Toward End-
user Programming. Ph.D. thesis. Dept. of
Computer Science, University of Colo-
rado, Boulder, 1996.

Dix, A., Finlay, J., Abowd, G. and Beale, R.
Human-Computer Interaction. Prentice-
Hall, UK, 1993.

Fischer, G. Cognitive View of Reuse and
Redesign, IEEE Software, Special Issue
on Software Reusability (July 1987), 60-
72.

Fischer, G. Domain-oriented Design Environ-
ments. Automated Software Engineering
1 (1994), 177-203.

Fischer, G., McCall, R. and Morch, A.
JANUS: Integrating Hypertext with a

25

Mørch: Evolving a Generic Application into a Domain-oriented Design Envi

Published by AIS Electronic Library (AISeL), 1996

www.manaraa.com

A. Mørch 88

Knowledge-based Design Environment.
Proc. Hypertext’89 (Pittsburgh, Novem-
ber 5-8, 1989), ACM Press, 105-117.

Fischer, G., Nakakoji, K. and Ostwald, J. Sup-
porting the Evolution of Design Artifacts
with Representations of Context and
Intent. Proc. Designing Interactive Sys-
tems. (Ann Arbor, MI, August 1995), 7-
15,

Gamma, E.R., Helm, R. Johnson, R. and
Vlissides, J: Design Patterns: Elements of
Reusable Object-Oriented Software. Add-
ison-Wesley, Reading, MA, 1995.

Girgensohn, A. End-user Modifiability in
Knowledge-based Design Environments.
Ph.D. dissertation. Dept. of Computer Sci-
ence, University of Colorado, Boulder,
1992.

Greenbaum, J and Kyng, M. (eds.). Design at
Work: Cooperative Design of Computer
Systems. Lawrence Erlbaum, Hillsdale,
NJ. 1991.

Greene, J. and d’Oliveira, M. Methodology
handbook. The Open University Press,
Milton Keynes, UK, 1981.

Henderson, A., and Kyng, M. There’s No
Place Like Home: Continuing Design in
Use. In Design at Work (Greenbaum, J &
Kyng, M., eds.). Lawrence Erlbaum,
Hillsdale, NJ, 1991, 219-240.

Knudsen, J.L., Bak, L. and Nørgaard, C. The
Mjølner BETA User Interface System. In
J. Lindskov Knudsen, M. Løfgren, O.
Lehrmann Madsen, and B. Magnusson
(Eds.). Object-oriented Environments:
The Mjølner Approach. Prentice-Hall,
New York, NY, 1993, 227-233.

Krasner, G.E. and Pope, S.T. A Cookbook for
Using the Model-View-Controller User-
interface Paradigm in SmallTalk-80.
JOOP 1, 3 (August/September, 1988), 26-
49.

Kristensen, B.B., Madsen, O.L., Møller-Ped-
ersen, B. and Nygaard, K. Classification
of Actions, or Inheritance also for Meth-
ods. Proc. ECOOP’87 European Conf. on
Object-oriented Programming (Paris, June

15-17, 1987) Lecture Notes in Computer
Science 276. Springer-Verlag, 98-107.

Krueger, C.W. Software Reuse. ACM Com-
puting Surveys 24 2 (June 1992), 131-
183.

MacLean, A., Carter, K., Lövstrand, L. and
Moran, T. User-tailorable Systems: Press-
ing the Issues with Buttons. Proc. CHI’90
Human Factors in Computing Systems
(Seattle, April 1-5, 1990), ACM Press,
175-182.

Madsen, O.L., Møller-Pedersen, B. and Nyg-
aard, K. Object-Oriented Programming in
the BETA Programming Language. Addi-
son-Wesley, Wokingham, 1993.

McCall, R. Issue-serve Systems: A Descrip-
tive Theory of Design. Design Methods
and Theories. 20, 8 (1986), 443-458.

Microsoft Corporation. Visual Basic User’s
Guide. 1994.

Moran, T. P., and Carroll, J.M. (Eds.) Design
Rationale: Concepts, Techniques, and
Use. Lawrence Erlbaum, Hillsdale, NJ,
1996.

Mørch, A. Application Units: Basic Building
Blocks of Tailorable Applications. Proc.
5th International East-West Conf. on
Human-Computer Interaction, (Moscow,
July 4-8, 1995). Lecture Notes in Compu-
ter Science 1015. Springer-Verlag, Berlin,
45-62.

Mørch, A. Designing for Radical Tailorabil-
ity: Coupling Artifact and Rationale.
Knowledge-Based Systems. 7, 4 (Dec.
1994), 253-264.

Mørch, A. Three Levels of End-user Tailor-
ing: Customization, Integration, and
Extension. Proc. Third Decennial Aarhus
Conference. (Aarhus, August 14-18,
1995). Dept. of Computer Science,
Aarhus University, Denmark, 157-166.

Nardi, B. A Small Matter of Programming:
Perspectives on End User Computing.
MIT Press, Cambridge, MA, 1993.

Nygaard, K. Profession-oriented Languages.
Proc. Medical Informatics Europe 84,
(Brussels, 1984), 38-44.

Pew, J.A. Instant Java. SunSoft Press, 1996.

26

Scandinavian Journal of Information Systems, Vol. 8 [1996], Iss. 2, Art. 5

http://aisel.aisnet.org/sjis/vol8/iss2/5

www.manaraa.com

A. Mørch 89

Popper, K.R. Objective Knowledge: An Evo-
lutionary Approach. Revised Edition.
Oxford, 1979.

Redmiles, D. From Programming Tasks to
Solutions: Bridging the Gap Through the
Explanation of Examples. Ph.D. disserta-
tion. Dept. of Computer Science, Univer-
sity of Colorado, Boulder, 1992.

Repenning, A. and Ambach, J. Visual
AgenTalk: Anatomy of a Low Threshold,
High Ceiling End-user Programming
Environment. Tech. Report CU-CS-802-
96. Dept. of Computer Science, Univer-
sity of Colorado, Boulder, 1996.

Schön, D. Designing as a reflective conversa-
tion with the materials of a design situa-
tion. Knowledge-Based Systems 5, 1
(March 1992), 3-13.

Williams, G. HyperCard Extends the Macin-
tosh User Interface and Makes Everybody
a Programmer. BYTE (December 1987),
109-117.

Winograd, T. Bringing Design to Software.
Addison-Wesley, Reading, MA, 1996.

Winograd, T. and Flores, F. Understanding
Computers and Cognition: A New Foun-
dation for Design. Ablex Publishing Cor-
poration, Norwood, NJ, 1986.

Vlissides, J.M. and Linton, M.A. UniDraw: A
Framework for Building Domain-specific
Graphical Editors. ACM Transactions on
Information Systems. 8, 3 (July 1990),
237-268.

27

Mørch: Evolving a Generic Application into a Domain-oriented Design Envi

Published by AIS Electronic Library (AISeL), 1996

www.manaraa.com

A. Mørch 90

28

Scandinavian Journal of Information Systems, Vol. 8 [1996], Iss. 2, Art. 5

http://aisel.aisnet.org/sjis/vol8/iss2/5

	Scandinavian Journal of Information Systems
	1996

	Evolving a Generic Application into a Domain-oriented Design Environment
	Anders Mørch
	Recommended Citation

	M.rch

